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Low Rank Matrix Recovery

Suppose X = {X ∈ Rn1×n2 : rank(X ) ≤ k � n1, n2}

Shows up in

Global Positioning, Sensor Localization
Collaborative Filtering
Quantum State Tomography, X-ray Crystallography

yi = |〈ai , x〉|2 = 〈aia∗
i , xx∗〉 =:M(xx∗)
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Low Rank Matrix Recovery

Natural first guess:

X ] := argmin
Z

rank(Z ) subject toM(Z ) = y

Problem: Solving the above is NP-Hard
Take convex relaxation (Maryam Fazel, ’02)

X ] := argmin
Z
‖Z‖∗ subject toM(Z ) = y ,

‖Z‖∗ =
r∑

j=1
σj(Z )
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Nuclear Norm Intuition

Low rank matrices have few singular values, i.e. vector of
singular values is sparse

Use `1 minimization
x ] := argmin

Z
‖x‖1 subject toM(x) = y ,

‖x‖1 =
r∑

j=1
|xj |

2

2dustingmixon.wordpress.com
Eric Lybrand, Rayan Saab



Low Rank Matrix Recovery Quantization Compressed Sensing and Quantization Addendum

Nuclear Norm Intuition

Low rank matrices have few singular values, i.e. vector of
singular values is sparse
Use `1 minimization

x ] := argmin
Z
‖x‖1 subject toM(x) = y ,

‖x‖1 =
r∑

j=1
|xj |

2
2dustingmixon.wordpress.com

Eric Lybrand, Rayan Saab



Low Rank Matrix Recovery Quantization Compressed Sensing and Quantization Addendum

RandomM Work Well

Theorem (E. Candès, Y. Plan, ’10)
Suppose m ≥ Ck max{n1, n2}, and letM(X ) :=

∑m
j=1〈Ai ,X 〉

where Ai are matrices with i.i.d. Gaussian entries. Then with high
probability on the draw ofM the following is true for all
X ∈ Rn1×n2 with rank(X ) ≤ k:
X is the unique minimizer of

X ] := argmin
Z
‖Z‖∗ subject toM(Z ) =M(X )

More generally, linear maps which satisfy the matrix
Restricted Isometry Property work well.
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Analog to Digital

Nuclear norm minimization necessitates the use of
computers...must store measurements with finitely many bits.

How should we represent the continuum with a finite set?

Are the previous results robust to quantization error?
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MSQ

Suppose we have some finite set (alphabet) A ⊂ R (e.g.
A = {±1}).

First Idea: “Round” each yi and proceed as usual (AKA
“Memoryless Scalar Quantization” or MSQ)
In the simplest case, take

Q : R→ {±1} D : {±1} → R
Q(y) = sign(y) D(q) = q

Control error in recovering X by increasing size of A (resp.
bits) so that D ◦ Q(y) ≈ y .
Problem: It could be expensive to increase the number of
bits used
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Oversampling

If the number of bits is fixed, try taking more measurements
Intuition: Measurements sign(〈Aj ,X 〉) defines a half-space X
lies in.
Minimizing quantization error ⇐⇒ minimizing volumes

Eric Lybrand, Rayan Saab
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The Shortcomings of MSQ

Volume of regions (i.e. reconstruction error) decay like m−1

Vivek Goyal et al (’98): reconstruction error from MSQ
quantized frame coefficients can’t decay faster than O(m−1).

Candés, Romberg, and Tao (2005): for sparse x if
‖y − q‖2 ≤ ε, then ‖x − x̂‖2 ≤ c1√

mε.

Alphabet resolution β =⇒ ‖y − q‖2 ≤
√
mβ =⇒

‖x − x̂‖2 ≤ c1β i.e. the error bound does not decrease with m.
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Σ∆ Quantization

Proposed by Inose & Yasuda, 1963 for quantizing bandlimited
functions
Keeps track of r previous quantization errors in a state
variable u to “shape” the quantized values

qi = Q(ρr (ui−1, . . . , ui−r , yi , . . . , yi−r+1))
Dru = y − q, (Du)i = ui − ui−1

For example, when r = 1,
qi = Q(yi + ui−1)
ui = ui−1 + yi − qi .

For example, could use equispaced grid where for some fixed
L > 0 and resolution β > 0

A := {±(j − 1/2)β, j ∈ [L]}.

Eric Lybrand, Rayan Saab
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Σ∆ Quantization

Critically important that for a given A, ρr is chosen so that
‖u‖∞ < γ(r) (Stability)

Daubechies & Devore (2003): first provably stable family for
bandlimited functions

Trade off between bit complexity of alphabet and stability
constant.
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A More General View of Noise Shaping

Σ∆ pushes quantization error of previous measurements
forward “in time.”

More general noise shaping could involving pushing
quantization error for `th coefficient to the `thk coefficient to
compensate (Boufounos, 2006).

3

3P. T. Boufounos, “Quantization and erasures in frame representations.”
Eric Lybrand, Rayan Saab
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The Perks of Noise Shaping: Sparse Vectors

Theorem (R. Saab, R. Wang, O. Yilmaz, 2015)

Let A ∈ Rm×N be a Gaussian matrix with m ≥ C1k log(eN/k).
Then with high probability the following is true for any k-sparse
x ∈ RN : let q = Q(r)

Σ∆(Ax). The solution

x̂ := argmin
z
‖z‖1 s.t. ‖D−r (Az − q)‖2 ≤ γ(r)

√
m

satisfies
‖x̂ − x‖2 ≤ C2β

(m
`

)−r+1/2
.

Result is stable w.r.t noise.
Result is robust to sparsity assumption.

Eric Lybrand, Rayan Saab
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Generalizing to Matrices
Theorem (E.L. and R. Saab, 2018)
LetM : Rn1×n2 → Rm be a sub-Gaussian linear map.

If
m ≥ ` ≥ c1k max{n1, n2} then w.h.p. on the draw ofM the
following holds uniformly for all X ∈ Rn1×n2 : let
q = Q(r)

Σ∆(M(X ) + η) with ‖η‖∞ ≤ ε. Define

(X ], ν]) := arg min
(Z ,ν)
‖Z‖∗ s.t. ‖D−r (M(Z ) + ν − q)‖2 ≤ γ(r)

√
m

and ‖ν‖2 ≤ ε
√
m.

Then X ] satisfies

‖X ] − X‖F .r

(m
`

)−r+1/2
β + σk(X )∗√

k
+
√m
`
ε.

Eric Lybrand, Rayan Saab



Low Rank Matrix Recovery Quantization Compressed Sensing and Quantization Addendum

Generalizing to Matrices
Theorem (E.L. and R. Saab, 2018)
LetM : Rn1×n2 → Rm be a sub-Gaussian linear map. If
m ≥ ` ≥ c1k max{n1, n2} then w.h.p. on the draw ofM the
following holds uniformly for all X ∈ Rn1×n2 :

let
q = Q(r)

Σ∆(M(X ) + η) with ‖η‖∞ ≤ ε. Define

(X ], ν]) := arg min
(Z ,ν)
‖Z‖∗ s.t. ‖D−r (M(Z ) + ν − q)‖2 ≤ γ(r)

√
m

and ‖ν‖2 ≤ ε
√
m.

Then X ] satisfies

‖X ] − X‖F .r

(m
`

)−r+1/2
β + σk(X )∗√

k
+
√m
`
ε.

Eric Lybrand, Rayan Saab



Low Rank Matrix Recovery Quantization Compressed Sensing and Quantization Addendum

Generalizing to Matrices
Theorem (E.L. and R. Saab, 2018)
LetM : Rn1×n2 → Rm be a sub-Gaussian linear map. If
m ≥ ` ≥ c1k max{n1, n2} then w.h.p. on the draw ofM the
following holds uniformly for all X ∈ Rn1×n2 : let
q = Q(r)

Σ∆(M(X ) + η) with ‖η‖∞ ≤ ε.

Define

(X ], ν]) := arg min
(Z ,ν)
‖Z‖∗ s.t. ‖D−r (M(Z ) + ν − q)‖2 ≤ γ(r)

√
m

and ‖ν‖2 ≤ ε
√
m.

Then X ] satisfies

‖X ] − X‖F .r

(m
`

)−r+1/2
β + σk(X )∗√

k
+
√m
`
ε.

Eric Lybrand, Rayan Saab



Low Rank Matrix Recovery Quantization Compressed Sensing and Quantization Addendum

Generalizing to Matrices
Theorem (E.L. and R. Saab, 2018)
LetM : Rn1×n2 → Rm be a sub-Gaussian linear map. If
m ≥ ` ≥ c1k max{n1, n2} then w.h.p. on the draw ofM the
following holds uniformly for all X ∈ Rn1×n2 : let
q = Q(r)

Σ∆(M(X ) + η) with ‖η‖∞ ≤ ε. Define

(X ], ν]) := arg min
(Z ,ν)
‖Z‖∗ s.t. ‖D−r (M(Z ) + ν − q)‖2 ≤ γ(r)

√
m

and ‖ν‖2 ≤ ε
√
m.

Then X ] satisfies

‖X ] − X‖F .r

(m
`

)−r+1/2
β + σk(X )∗√

k
+
√m
`
ε.

Eric Lybrand, Rayan Saab



Low Rank Matrix Recovery Quantization Compressed Sensing and Quantization Addendum

Generalizing to Matrices
Theorem (E.L. and R. Saab, 2018)
LetM : Rn1×n2 → Rm be a sub-Gaussian linear map. If
m ≥ ` ≥ c1k max{n1, n2} then w.h.p. on the draw ofM the
following holds uniformly for all X ∈ Rn1×n2 : let
q = Q(r)

Σ∆(M(X ) + η) with ‖η‖∞ ≤ ε. Define

(X ], ν]) := arg min
(Z ,ν)
‖Z‖∗ s.t. ‖D−r (M(Z ) + ν − q)‖2 ≤ γ(r)

√
m

and ‖ν‖2 ≤ ε
√
m.

Then X ] satisfies

‖X ] − X‖F .r

(m
`

)−r+1/2
β + σk(X )∗√

k
+
√m
`
ε.

Eric Lybrand, Rayan Saab



Low Rank Matrix Recovery Quantization Compressed Sensing and Quantization Addendum

Proof Sketch

Goal: Control ‖X ] − X‖F := ‖W ‖F

Non-commutativity makes things difficult. Try and reduce it
to the vector setting.
New Goal: Formulate a corresponding vector optimization
problem where error between minimizer and truth is ‖W ‖F .

Eric Lybrand, Rayan Saab
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Proof Sketch

Let W := UW ΣWV ∗W , and set X1 := −UW ΣXV ∗W

DefineMUW ,VW (x) :=M(UW diag(x)V ∗W ), and
y := D−r (MUW ,VW (−~σ(X )) + e) + u.

Show ~σ(W )− ~σ(X ) is feasible to the vector optimization
problem with A = MUW ,VW and D−rq = y .

Eric Lybrand, Rayan Saab
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Use a lemma from Oymak et al (2011) which buys us

‖~σ(W )− ~σ(X )‖1 = ‖X1 + W ‖∗ ≤ ‖X1‖∗ = ‖~σ(X )‖1

All that’s left is to show that 1√
`
P`V ∗MUW ,VW satisfies the

RIP for all unitary UW ,VW , as then we can invoke the
theorem for vector recovery.

We use the chaining technique as proposed by Talagrand.
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Root Exponential Accuracy

Corollary (E.L. and R. Saab, 2018)

Let q = Q(r)
Σ∆(M(X )) denote quantized noiseless measurements

and X ∈ Rn1×n2 with rank(X ) = k. Then there exist constants
c, c1,C1,C2 > 0 so that when

λ := m
dck max(n1, n2)e

r :=
⌊

λ

2C1e

⌋1/2

q := Qr
Σ∆(M(X )).

the minimizer X ] satisfies ‖X ] − X‖F . βe−c1
√
λ.

Eric Lybrand, Rayan Saab



Low Rank Matrix Recovery Quantization Compressed Sensing and Quantization Addendum

Exponential Accuracy with Random Encoding

Corollary (E.L. and R. Saab, 2018)
Let B : Rm → RL be a Bernoulli random matrix whose entries are
±1. Whenever m &r L &r k max(n1, n2) the following is true
w.h.p. on the draw ofM and B: the solution of

(X̂ , ν̂) := arg min
(Z ,ν)
‖Z‖∗ s.t. ‖BD−r (M(Z ) + ν − q)‖2 ≤ 3mγ(r)

and ‖ν‖2 ≤ ε
√
m.

satisfies

‖X̂ − X‖F .
(m
L

)−r/2+3/4
β + σk(X )∗√

k
+
√m

L ε.
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Exponential Accuracy with Random Encoding

For noiseless measurements of rank k matrices, this means
reconstruction error decays exponentially w.r.t. rate (number
of bits).

Random encoding “reduces complexity” of alphabet A.
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Numerical Illustrations
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Numerical Results

Error Bound

Experimental DL: reconstruct rank 5, 20× 20 Gaussian matrices
from noiseless Gaussian measurements, averaged over 20 draws of
true matrix.
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Future Directions

Taking sub-gaussian measurements is, in general, slow. Do
the results hold for partial random circulant matrices, etc?

How can we modify these results to apply in the matrix
completion setting?

Experiments show the exponent for noiseless encoding bound

‖X̂ − X‖F .
(m
L

)−r/2+3/4

is sub-optimal. Can we prove that it holds with the bound(m
L
)−r+3/4?
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Fin
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Theorem (R. Saab, R. Wang, O. Yilmaz, 2015)

Let A ∈ Rm×N , P` : Rm → Rm the projection onto the first `
coordinates, and V ∗ as in the singular value decomposition of D−r .
Suppose that 1√

`
P`V ∗A has the vector-RIP of order k and

constant δk < 1/9. Then any feasible x̂ of

(x̂ , ν̂) := arg min
(z,ν)
‖z‖1 s.t. ‖D−r (Az + ν − q)‖2 ≤ γ(r)

√
m

and ‖ν‖2 ≤ ε

with ‖x̂‖1 ≤ ‖x‖1 and q satisfying Ax + e − Dru = q with
‖u‖∞ ≤ γ(r) <∞ and ‖e‖2 ≤ ε satisfies

‖x̂ − x‖2 ≤ C
((m

`

)−r+1/2
β + σk(x)1√

k
+
√m
`
ε

)
,

where σk(x)1 = argmin|supp(z)|≤k‖x − z‖1.Eric Lybrand, Rayan Saab
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A Stronger RIP

Definition
A linear mapM : Rn1×n2 → Rm satisfies the matrix RIP of order k
with constant δk if for any matrix X with rank(X ) ≤ k

(1− δk)‖X‖2F ≤ ‖M(X )‖22 ≤ (1 + δk)‖X‖2F

Lemma (S. Oymak, K. Mohan, M. Fazel, B. Hassibi, 2011)
IfM satisfies the matrix RIP of order k with constant δk , then for
any unitary matrices U,V the linear mapMU,V satisfies the
vector RIP of order k with constant δk .
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Low Rank Matrix Recovery Quantization Compressed Sensing and Quantization Addendum

A Stronger RIP

Definition
A linear mapM : Rn1×n2 → Rm satisfies the matrix RIP of order k
with constant δk if for any matrix X with rank(X ) ≤ k

(1− δk)‖X‖2F ≤ ‖M(X )‖22 ≤ (1 + δk)‖X‖2F

Lemma (S. Oymak, K. Mohan, M. Fazel, B. Hassibi, 2011)
IfM satisfies the matrix RIP of order k with constant δk , then for
any unitary matrices U,V the linear mapMU,V satisfies the
vector RIP of order k with constant δk .

Eric Lybrand, Rayan Saab



Low Rank Matrix Recovery Quantization Compressed Sensing and Quantization Addendum

Proof Sketch

So it suffices to show that the linear map 1√
`
P`V ∗M satisfies

the matrix RIP.

Consider the stochastic process

ZX :=
∣∣∣∣1` ‖P`V ∗M(X )‖2F − ‖X‖2F

∣∣∣∣
Goal: Control

P
(
sup
X

ZX ≥ t
)
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The Generic Chaining

Motivating Idea: Suppose that X were drawn from a finite
set T . We could always union bound:

P
(
sup
X∈T

ZX ≥ t
)
≤
∑

X∈T
P (ZX ≥ t)

This upper bound will be too pessimistic if the ZX are
correlated.
Michel Talagrand (1996) established a technique which
cleverly “groups” correlated draws of ZX to make union
bounding effective.
Built off of an increment property: it is assumed that there
exists a metric d so that

P (|ZX − ZY | ≥ t) ≤ 2 exp
(
−t2

d2(X ,Y )

)
.
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The Generic Chaining

Successively approximate ZX by

ZX = ZX − Zπ1(X) + Zπ1(X) = ZX −
∑

j
Zπj (X) − Zπj−1(X)

where πj projects T onto some finite subset Tj ⊂ T .
Intuitively, elements in the fiber π−1

j (t) “are the same”.

Use the increment property on each of the residuals
Zπj (X) − Zπj−1(X) and union bound over the fibers of πj .
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Results Using Chaining

Unsurprisingly, the geometry induced on T by the metric d
will govern the tail bound

A result by Krahmer, Mendelson, and Rauhut (2013) using
chaining allows us to bound the deviation of∣∣∣∣1` ‖P`V ∗M(X )‖2F − ‖X‖2F

∣∣∣∣
in terms of the “sizes” of the set

{X ∈ Rn1×n2 : ‖X‖F = 1, rank(X ) ≤ k}.

The low dimensionality of the above set is what allows us to
undersample and obtain the matrix RIP.
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