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Introduction

• Why compressed sensing?
• Data acquisition technique that simultaneously reduces
dimension.

• Many useful tools for fast linear near-isometric
embeddings, avoids curse of dimensionality, ... (more
later)

• Why quantization?
• Compressed sensing algorithms require using digital
computers ... (more later)

• Reduces memory overhead associated with high
dimensional data.

• Why manifolds?
• Useful model for data in signal processing, machine
learning.



The Mental Picture



Wish List

Embedding
• Must be fast, e.g.
convolutions,
DFT, DCT.

• Approximately
preserves structure
of data, e.g.
pairwise distances.

Quantization
• Independent of
sampling scheme.

• Coarse alphabets,
e.g. {±1}.

• Robust to hardware
imperfections.

• Quantization error
should decay
super-linearly as
function of
measurements.

Decoder
• Provable
guarantees of
accuracy with
minimal
measurements.

• Robust to model
inaccuracies.

• Fast.
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Applications

Any procedure that involves ε-nearest-neighbors searches:
• Classification: Classify a new object based on on the majority
class of its neighbors.

• Regression: Assign value as the average or median of its
neighbors.

• Data Retrieval: Find an object that resembles a particular
query.

• Recommender Systems: Find a user who is most similar to a
specific user.

• Clustering: k-means, ...



Johnson-Lindenstrauss Embeddings

Motivation: Random linear maps act as approximate isometries.

Lemma (Johnson, Lindenstrauss 1984)
Let T ⊂ RN be a finite set of points. For any

m ≥ C log(|T |)
ε2 ,

there exists a (random) linear map A : RN → Rm so that for any
x , y ∈ T , ∣∣∣‖Ax − Ay‖2 − ‖x − y‖2

∣∣∣ ≤ ε‖x − y‖2.



Quantized JL Embeddings

Idea: Use JL-embedding A and quantize each x to sign(Ax).

Lemma (Jacques et al 2011)
Let T ⊂ SN−1 be a finite set of points. For any

m ≥ C ′ log(|T |)
ε2 ,

there exists a (random) linear map A : RN → Rm so that for any
x , y ∈ T , ∣∣∣‖ sign(Ax)− sign(Ay)‖H − ‖x − y‖SN−1

∣∣∣ ≤ ε,
where ‖ · ‖H , ‖ · ‖SN−1 are the normalized Hamming and geodesic
distance, resp.

Remark: Up to constants, no extra price paid between JL and
quantized JL embeddings!
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Compressed Sensing Crash Course

Moving from finite sets to infinite sets requires more nuanced
signal models.

• Goal: Recover x ∈ RN from y = Ax + η ∈ Rm, m� N,
‖η‖2 ≤ ε using structural priors on x , e.g. sparsity.
• Remark: Signal acquisition via A: compressing while
acquiring.

• Remark: JL matrices often make good CS matrices.
• Standard Solution: Solve

x ] := arg min ‖z‖1 s.t. ‖Az − y‖2 ≤ ε.

Theorem ((Candés et al 2006), (Cai et al 2014), ...)
If A ∈ Rm×N satisfies (2k, α)− RIP with α ≤ 1√

2 then

‖x ] − x‖2 ≤ C1ε+ C2
σk(x)1√

k
, σk(x)1 = min

y k-sparse
‖x − y‖1.



Quantized Compressed Sensing

• As before, but now given q = Q(Ax) ∈ Am ⊂ Rm, A discrete.
• Extreme case A = {±1}.

• Designing Q,A is crucial to the analysis of problem.

• Much work has been done on recovering sparse vectors from
quantized measurements, e.g.

• P. Boufounos, R. Baraniuk “One-Bit Compressed Sensing,” 2008.
• S. Güntürk, A. Powell, R. Saab, O. Yilmaz “Sobolev Duals,” 2010.
• Y. Plan, R. Vershynin “Robust 1-bit Compressed Sensing,” 2012.
• L. Jacques, P. Boufounos, et al “Binary Stable Embeddings,” 2015.
• R. Saab, T. Huynh “Fast Binary Embeddings,” 2018.



Quantized Embeddings of Infinite Sets

Few results on more general signal models, e.g.
• V. Cambereri, L. Jacques “Time for Dithering,” 2017.
• R. Vershynin and Y. Plan, “Robust 1-bit Compressed

Sensing,” 2013.
• M. Iwen, F. Krahmer et al “One-Bit Compressed Sensing

on Manifolds,” 2018.

These works admit at least one of the following
shortcomings:
• Slow error decay as a function of m.
• Assumes you have parametrization of manifold.
• Limits model to be sub-manifold of SN−1.
• Gaussian (read: slow) measurements.



Shortcomings of MSQ

• All magnitude information is lost: sign(Ax) = sign(A x
‖x‖).

• MSQ quantization (i.e. y = sign(Ax)) error cannot decay
faster than O(m−1) in frame setting [Goyal et al 1998].

• In sparse vector recovery [Romberg et al 2015] reconstruction
error does not decay with m.



Our Set-Up

• Signal Model: (Unknown) d-manifold K ⊂ BN
2 .

• Measurements: A ∈ Rm×N from sub-Gaussian ensemble,
PCE, or BOE (rows selected uniformly with replacement).
Dε ∈ RN×N diagonal of Rademacher r.v.’s independent of A.
• PCE: Partial Circulant Ensemble. Appears in channel
estimation, radar.

• BOE: Bounded Orthonormal Ensemble, e.g. DFT, DCT.
Appears in fMRI.

• Quantization: One-bit q = Q(r)
Σ∆(ADεx) =: Q(r)

Σ∆(Φx), (more
later).

• Approximatation of K : Geometric Multi-Resolution Analysis
(GMRA).
• More later.



One-Bit Noise-Shaping Quantization

• Leverages correlations between measurements to minimize
quantization error.

• For a given r > 0 and filter h with | supp(h)| = r , define

qi = sign ((h ∗ u)i−1 + yi ) ,
ui = (h ∗ u)i−1 + yi − qi .

• Must choose h so that whenever ‖y‖∞ < 1, ‖u‖∞ bounded
by constant depending only on r .



Perks of Noise Shaping

• In frame and compressed sensing context, quantization error
decays like O(m−r ) or O(2−c′m).

• P. Deift, S. Güntürk, F. Krahmer, “Exponentially Accurate One-Bit
Σ∆” 2010.

• R. Saab, R. Wang, O. Yilmaz, “Quantization of Compressive
Samples” 2015.

• E. Chou, S. Güntürk "Distributed Noise Shaping," 2016.

• In the above contexts, norm information is preserved.

• Certain instances of noise-shaping (e.g. Σ∆) are provably
robust to hardware imperfections in machine arithmetic
[Daubechies, Devore 2003]



GMRA

Roughly speaking, a GMRA is a sequence of affine approximations
with a dyadic (tree) structure [Allard, Chen, Maggioni 2012].

GMRA at scale 0 GMRA at scale 1 GMRA at scale 2



Approximate Binary Embedding

Theorem (R. Saab, T. Huynh, 2018)
There exists Ṽ = p−1/2 · Ip×p ⊗ vT

‖v‖2
∈ Rp×m such that the

following holds:
let K ⊂ BN

1 , m ≥ p ≥ C1α
−2 log4(N) max{1, w2(K)

rad2(K)}, and let

f (x) = Q(r)
Σ∆(Φx). Then with high probability∣∣∣‖Ṽ (f (x)− f (y))‖2−‖x − y‖2

∣∣∣
≤ max{α,

√
α}rad(K )︸ ︷︷ ︸

manifold complexity

+C2

(m
p

)−r+1/2

︸ ︷︷ ︸
quantization error

for all x , y ∈ K.



Our Algorithm

GIVEN: Φ = ADε ∈ Rm×N , q := Q(Φx), GMRA of K :

• Step 1: Find a center in the GMRA which quantizes to a
bit-string close to q.

cj,k′ ∈ arg min
cj,k∈Cj

‖Ṽ (Q(Φcj,k)− q)‖2.

• Step 2: Find the point in the GMRA closest to the
quantization cell containing x .

x ] = arg min
z∈RN

∥∥∥Ṽ (Φz − q)
∥∥∥

2

s.t. z = Pj,k′(z), ‖z‖2 ≤ 1.



Our Algorithm in Pictures



Our Result

Theorem (Iwen, L., Nelson, Saab 2019)
Let S = K ∪ GMRA at scale j. Suppose that

m ≥ p ≥ C log4(N)max{1,w2(S)rad−2(S)}
α2 ,

and define λ := m/p. Then with high probability the following
event occurs uniformly for all x ∈ K: the solution x ] of the main
algorithm satisfies

‖x ] − x‖2 .r Cx2−j︸ ︷︷ ︸
GMRA Error

+ max{
√
α, α}rad(S)︸ ︷︷ ︸

Manifold complexity.

+ λ−r+1/2︸ ︷︷ ︸
Quantization error

.



Important Proof Ideas

• GMRA approximation incrementally improves with scale
parameter.

=⇒ there’s an affine plane approximating K nearby x .
• V ◦ Q ◦ Φ approximate isometric embedding of
S = K ∪ GMRA from (RN , `2) to ({±1}p, `2).

=⇒ Step 1 objective function
‖Ṽ (Q(Φcj,k)− q)‖2 ≈ ‖cj,k − x‖2.

• V ◦ Φ approximate isometric embedding of S = K ∪ GMRA
from (RN , `2) to (Rp, `2).

=⇒ Step 2 objective∥∥∥Ṽ (Φz − q)
∥∥∥

2
≈ ‖z − x‖2 + (small perturbation).



Numerics

Figure: Log-scale error as a function of λ = m/p. Experiments for
S2 ↪→ R20. Solid lines are GMRA refinement level j = 12; dashed lines to
j = 6. Blue and red plots represent r = 2, 4 (resp.)



Concluding Remarks

• For approximately the same price (embedding dimension) as
“analog” JL-embeddings, one can also find quantized
JL-embeddings.

• The choice of encoder, particularly the quantizer, dramatically
impacts quantization error decay of decoder.

• As in the frame/CS setting, noise-shaping quantizers exhibit
same rapid quantization error decay in the (approximate)
manifold model.



Appendix: Noise Shaping

Noise shaping quantizers with alphabet A and scalar quantizer
Q(z) = arg minq∈A |q − z | update q, u via

qi = Q(ρ(ui−r , ..., ui−1, yi )),
y − q = Hu,

where H is lower-triangular (causality) and ρ is chosen so that
‖y‖1 < C1 =⇒ ‖u‖∞ < C2



Appendix: Noise Shaping

Σ∆: for r > 0,

H =



1
−1 1

. . .
−1 1




r

[Daubechies, Devore 2003],
[Güntürk, 2003], [Benedetto et al
2005]

Distributed Noise Shaping:
for β > 1,

Hβ =


1
−β 1

. . .
−β 1

 ∈ Rm/p×m/p,

H =


Hβ

Hβ
. . .

Hβ

 ∈ Rm×m

[Chou, Güntürk 2016]



Appendix: GMRA

Let J ∈ N and K0, . . . ,KJ ∈ N. A GMRA of K is a collection
{(Cj ,Pj)}j∈[J] of centers Cj = {cj,k}k∈[Kj ] and affine projections

Pj =
{
Pj,k : RN → RN : k ∈ [Kj ]

}
with the following properties:
•Affine Projections. Every Pj,k is an orthogonal projection onto
some d-dimensional affine space which contains the center cj,k .

•Dyadic Structure. The number of centers at each level is
bounded by |Cj | = Kj ≤ CC2dj for an absolute constant CC ≥ 1.
Moreover, there exist C1 > 0, C2 ∈ (0, 1] such that
•Kj ≤ Kj+1 for all j ∈ [J − 1],
•‖cj,k1 − cj,k2‖2 > C12−j for all j ∈ [J ], k1 6= k2 ∈ [Kj ],
•For each j ∈ [J ] \ {0} there exists a parent function
pj : [Kj ]→ [Kj−1] with
‖cj,k − cj−1,pj (k)‖2 ≤ C2 min

k′∈[Kj−1]\{pj (k)}
‖cj,k − cj−1,k′‖2.

......



Appendix: GMRA

• Multiscale Approximation. The projectors in Pj
approximate K in the following sense:
•There exists j0 ∈ [J − 1] such that cj,k ∈ tubeC12−j−2(K ) for
all j ≥ j0 and k ∈ [Kj ].

•For each j ∈ [J ] and z ∈ RN , let

cj,kj (z) ∈ arg min
cj,k∈Cj

‖z − cj,k‖2.

Then for each z ∈ K there exist Cz , C̃z > 0 so that
‖z − Pj,kj (z)z‖2 ≤ Cz2−2j for all j ∈ [J ] and

‖z − Pj,k′z‖2 ≤ C̃z2−j

whenever j ∈ [J ] and k ′ ∈ [Kj ] satisfy

‖z − cj,k′‖2 ≤ 16max
{
‖z − cj,kj (z)‖2, C12−j−1}.


