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Introduction

e Why compressed sensing?
e Data acquisition technique that simultaneously reduces
dimension.

e Many useful tools for fast linear near-isometric
embeddings, avoids curse of dimensionality, ... (more
later)

e Why quantization?

e Compressed sensing algorithms require using digital
computers ... (more later)

e Reduces memory overhead associated with high
dimensional data.

e Why manifolds?

e Useful model for data in signal processing, machine

learning.



The Mental Picture
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Wish List

Embedding

e Must be fast, e.g.
convolutions,
DFT, DCT.

e Approximately
preserves structure
of data, e.g.
pairwise distances.



Wish List
Embedding Quantization
e Must be fast, e.g. e Independent of
convolutions, sampling scheme.
DFT, DCT. e Coarse alphabets,
e Approximately e.g. {1}
preserves structure e Robust to hardware
of data, e.g. imperfections.
pairwise distances. e Quantization error

should decay
super-linearly as
function of
measurements.



Wish List
Embedding Quantization Decoder
e Must be fast, e.g. e Independent of e Provable
convolutions, sampling scheme. guarantees of
DFT, DCT. e Coarse alphabets, accuracy with
e Approximately e.g. {1} minimal
preserves structure e Robust to hardware measurements.
of data, e.g. imperfections. e Robust to model
pairwise distances. e Quantization error inaccuracies.
should decay e Fast.
super-linearly as
function of

measurements.



Applications

Any procedure that involves e-nearest-neighbors searches:

Classification: Classify a new object based on on the majority
class of its neighbors.

Regression: Assign value as the average or median of its
neighbors.

Data Retrieval: Find an object that resembles a particular
query.

Recommender Systems: Find a user who is most similar to a
specific user.

Clustering: k-means, ...



Johnson-Lindenstrauss Embeddings

Motivation: Random linear maps act as approximate isometries.

Lemma (Johnson, Lindenstrauss 1984)

Let T C RN be a finite set of points. For any

()

there exists a (random) linear map A : RN — R™ so that for any
x,y €T,

1A% = Ayllo = l1x = yllo| < ellx = yllo




Quantized JL Embeddings

Idea: Use JL-embedding A and quantize each x to sign(Ax).



Quantized JL Embeddings

Idea: Use JL-embedding A and quantize each x to sign(Ax).

Lemma (Jacques et al 2011)
Let T  SV=1 be a finite set of points. For any

s el
there exists a (random) linear map A : RN — R™ so that for any
x,yeT,
<e

Y

‘H sign(Ax) — sign(Ay)||n — [Ix — yllsn-1

where || - |, || - ||sv—1 are the normalized Hamming and geodesic
distance, resp.




Quantized JL Embeddings

Idea: Use JL-embedding A and quantize each x to sign(Ax).

Lemma (Jacques et al 2011)
Let T  SV=1 be a finite set of points. For any

s el
there exists a (random) linear map A : RN — R™ so that for any
x,yeT,

<e

Y

‘H sign(Ax) — sign(Ay)||n — [Ix — yllsn-1

where || - |, || - ||sv—1 are the normalized Hamming and geodesic
distance, resp.

Remark: Up to constants, no extra price paid between JL and
quantized JL embeddings!



Compressed Sensing Crash Course

Moving from finite sets to infinite sets requires more nuanced
signal models.
e Goal: Recover x € RN from y=Ax+neR" m<N,
|Inll2 < € using structural priors on x, e.g. sparsity.
e Remark: Signal acquisition via A: compressing while
acquiring.
e Remark: JL matrices often make good CS matrices.
e Standard Solution: Solve

x* = argmin ||z)y st. |Az — y|l» < e.

Theorem ((Candés et al 2006), (Cai et al 2014), ...)

If A e RN satisfies (2k, ) — RIP with o < % then

t < Uk(X)l _ . _
It = xlo < Ge+ QT2 o= min_lx—ylh.




Quantized Compressed Sensing

e As before, but now given g = Q(Ax) € A™ C R™, A discrete.
e Extreme case A = {£1}.

e Designing Q, A is crucial to the analysis of problem.

e Much work has been done on recovering sparse vectors from
quantized measurements, e.g.
e P. Boufounos, R. Baraniuk “One-Bit Compressed Sensing,” 2008.
S. Giintiirk, A. Powell, R. Saab, O. Yilmaz “Sobolev Duals,” 2010.
Y. Plan, R. Vershynin “Robust 1-bit Compressed Sensing,” 2012.
L. Jacques, P. Boufounos, et al “Binary Stable Embeddings,” 2015.
R. Saab, T. Huynh “Fast Binary Embeddings,” 2018.



Quantized Embeddings of Infinite Sets

Few results on more general signal models, e.g.
[l K

e V. Cambereri, L. Jacques “Time for Dithering,” 2017.
e R. Vershynin and Y. Plan, “Robust 1-bit Compressed 5

Sensing,” 2013.
e M. Iwen, F. Krahmer et al "One-Bit Compressed Sensing

on Manifolds,” 2018.

|

These works admit at least one of the following
shortcomings:

e Slow error decay as a function of m.
e Assumes you have parametrization of manifold.

e Limits model to be sub-manifold of SV-1. 0_,}_

(Ax)

Sign

s

¢
e Gaussian (read: slow) measurements. ‘
o - /, ~ 0



Shortcomings of MSQ

e All magnitude information is lost: sign(Ax) = sign(Ani—”).

e MSQ quantization (i.e. y = sign(Ax)) error cannot decay
faster than O(m~1) in frame setting [Goyal et al 1998].

e In sparse vector recovery [Romberg et al 2015] reconstruction
error does not decay with m.



Our Set-Up

e Signal Model: (Unknown) d-manifold K C BY.

e Measurements: A € R™*N from sub-Gaussian ensemble,
PCE, or BOE (rows selected uniformly with replacement).
D. € RV*N diagonal of Rademacher r.v.'s independent of A.

e PCE: Partial Circulant Ensemble. Appears in channel
estimation, radar.
e BOE: Bounded Orthonormal Ensemble, e.g. DFT, DCT.
Appears in fMRI.
¢ Quantization: One-bit g = Q(zr)A(ADex) = Q(zr)A(cbx), (more
later).
e Approximatation of K: Geometric Multi-Resolution Analysis
(GMRA).
e More later.



One-Bit Noise-Shaping Quantization

e Leverages correlations between measurements to minimize
quantization error.

e For a given r > 0 and filter h with |supp(h)| = r, define

qi = sign ((h* u)i—1 + i),
up = (h*u)i-1+yi — qi.

e Must choose h so that whenever ||y|/c < 1, ||t||cc bounded
by constant depending only on r.



Perks of Noise Shaping

e In frame and compressed sensing context, quantization error
decays like O(m~") or O(2=¢'™).
e P. Deift, S. Giintiirk, F. Krahmer, “Exponentially Accurate One-Bit
Y A" 2010.
e R. Saab, R. Wang, O. Yilmaz, “Quantization of Compressive
Samples” 2015.
e E. Chou, S. Giintiirk "Distributed Noise Shaping," 2016.

e In the above contexts, norm information is preserved.

e Certain instances of noise-shaping (e.g. £A) are provably
robust to hardware imperfections in machine arithmetic
[Daubechies, Devore 2003]



GMRA

Roughly speaking, a GMRA is a sequence of affine approximations
with a dyadic (tree) structure [Allard, Chen, Maggioni 2012].

GMRA at scale 0 GMRA at scale 1 GMRA at scale 2



Approximate Binary Embedding

Theorem (R. Saab, T. Huynh, 2018)

There exists V = p1/2 loxp ® H ” € RPX™ sych that the
following holds:

let K < BY, m>p > Cia?log*(N) max{1, dz((KK) 1, and let

f(x) = QYA (®x). Then with high probability

IV(F(x) = £ )l l1x = yll2|

m —r+1/2
< max{a, alrad(K) + G <p)
(S —

manifold complexity

quantization error

for all x,y € K.




Our Algorithm

GIVEN: ® = AD, € R™N g := Q(dx), GMRA of K:

e Step 1: Find a center in the GMRA which quantizes to a
bit-string close to q.

Gk € argmin | V(Q(®c; ) — q)ll2-

¢j,k€C;

e Step 2: Find the point in the GMRA closest to the
quantization cell containing x.

x* :arngRrBVin H V(bz — q)H2

st. z=Pj(2), ||zl < 1.



Our Algorithm in Pictures




Our Result

Theorem (lwen, L., Nelson, Saab 2019)
Let S = KU GMRA at scale j. Suppose that

2 -2
m>p> Clog*(N) max{1, w (Oész)rad (5)},

and define X\ := m/p. Then with high probability the following
event occurs uniformly for all x € K: the solution x* of the main
algorithm satisfies

Ix¥ —xl2 <r G277 +max{Va,ajrad(S)+ A2

GMRA Error Manifold complexity. Quantization error




Important Proof ldeas

e GMRA approximation incrementally improves with scale
parameter.
= there’s an affine plane approximating K nearby x.
e Vo Qo d approximate isometric embedding of
S = K U GMRA from (RN, £5) to ({£1}P, (5).
= Step 1 objective function
IV(Q(®cik) — g)ll2 = [I¢jk — x]|2.
e V o ® approximate isometric embedding of S = K U GMRA
from (RN,EQ) to (RP,£2).
—> Step 2 objective
H V (bz — q)H2 ~ ||z — x||, + (small perturbation).



Numerics

10" 102 10°

Figure: Log-scale error as a function of A = m/p. Experiments for
52 < R?%. Solid lines are GMRA refinement level j = 12; dashed lines to
Jj = 6. Blue and red plots represent r = 2,4 (resp.)



Concluding Remarks

e For approximately the same price (embedding dimension) as
“analog” JL-embeddings, one can also find quantized
JL-embeddings.

e The choice of encoder, particularly the quantizer, dramatically
impacts quantization error decay of decoder.

e As in the frame/CS setting, noise-shaping quantizers exhibit
same rapid quantization error decay in the (approximate)
manifold model.



Appendix: Noise Shaping

Noise shaping quantizers with alphabet A and scalar quantizer
Q(z) = argmin ¢ 4 |q — z| update g, u via

qi = Q(P(Ui—ra ceey Ui—17Yi))7
y —q = Hu,

where H is lower-triangular (causality) and p is chosen so that
Iyl <G = ullo < G



Appendix: Noise Shaping

>A: for r >0, Distributed Noise Shaping:

) , for 3 >1,
9 -1 1 1

Hs = -8 1 e Rm/pxm/p7
-1 1
-8 1

[Daubechies, Devore 2003], -
[Giintiirk, 2003], [Benedetto et al Hg
2005] Hg

H= e R™m

[Chou, Giintiirk 2016]



Appendix: GMRA

Let Je Nand Kp,...,K; € N. A GMRA of K is a collection
{(Cj, Pj)}jery of centers Cj = {cj k}ke[k;) and affine projections

Py = {Puc RV 5 BV : ke K]}

with the following properties:
e Affine Projections. Every P; , is an orthogonal projection onto
some d-dimensional affine space which contains the center ¢; x.
e Dyadic Structure. The number of centers at each level is
bounded by |C;| = K; < Cc2% for an absolute constant Cc > 1.
Moreover, there exist C; > 0, C; € (0, 1] such that
oK; < Kjy1 forall j € [J—1],
ollcik — Cirllz > G127 for all j € [J], ki # ko € [K]],
eFor each j € [J]\ {0} there exists a parent function
pj: [Kj] = [Kj-1] with

||Cj,k - Cj—l,pj(k)H2 <C HCj,k — Cj—l,k’||2-

5 min
k'e[Ki—1]\{p;(k)}



Appendix: GMRA

e Multiscale Approximation. The projectors in P;
approximate K in the following sense:
e There exists jo € [J — 1] such that ¢j € tubec ,-j—2(K) for
all j > jo and k € [K]].
eFor each j € [J] and z € RV, let

Cjki(z) € argmin |z = ¢jkll2-
G,k €L

Then for each z € K there exist (,, Z"z > 0 so that
”Z — Pj,kj(z)zH2 < C22*2j for all Jj € [J] and

|z = Pjzll2 < G274
whenever j € [J] and k" € [K]] satisfy

|z — ¢jwll2 < 16max {||z — cjykj(z)||2, C12_j_1}.



