Improved Recovery Guarantees for One-Bit Compressed Sensing on Manifolds

Eric Lybrand May 22, 2019

Coauthors

Mark Iwen, MSU

Aaron Nelson, UCSD

Rayan Saab, UCSD

Introduction

- Why compressed sensing?
 - Data acquisition technique that simultaneously reduces dimension.
 - Many useful tools for fast linear near-isometric embeddings, avoids curse of dimensionality, ... (more later)
- Why quantization?
 - Compressed sensing algorithms require using digital computers ... (more later)
 - Reduces memory overhead associated with high dimensional data.
- Why manifolds?
 - Useful model for data in signal processing, machine learning.

The Mental Picture

Wish List

Embedding

- Must be fast, e.g. convolutions, DFT, DCT.
- Approximately preserves structure of data, e.g. pairwise distances.

Wish List

Embedding

- Must be fast, e.g. convolutions, DFT, DCT.
- Approximately preserves structure of data, e.g. pairwise distances.

Quantization

- Independent of sampling scheme.
- Coarse alphabets, e.g. {±1}.
- Robust to hardware imperfections.
- Quantization error should decay super-linearly as function of measurements.

Wish List

Embedding

- Must be fast, e.g. convolutions, DFT, DCT.
- Approximately preserves structure of data, e.g. pairwise distances.

Quantization

- Independent of sampling scheme.
- Coarse alphabets, e.g. {±1}.
- Robust to hardware imperfections.
- Quantization error should decay super-linearly as function of measurements.

Decoder

- Provable guarantees of accuracy with minimal measurements.
- Robust to model inaccuracies.
- Fast.

Applications

Any procedure that involves ε -nearest-neighbors searches:

- Classification: Classify a new object based on on the majority class of its neighbors.
- Regression: Assign value as the average or median of its neighbors.
- Data Retrieval: Find an object that resembles a particular query.
- Recommender Systems: Find a user who is most similar to a specific user.
- Clustering: k-means, ...

Johnson-Lindenstrauss Embeddings

Motivation: Random linear maps act as approximate isometries.

Lemma (Johnson, Lindenstrauss 1984)

Let $\mathcal{T} \subset \mathbb{R}^N$ be a finite set of points. For any

$$m \geq C \frac{\log(|\mathcal{T}|)}{\varepsilon^2},$$

there exists a (random) linear map $A : \mathbb{R}^N \to \mathbb{R}^m$ so that for any $x, y \in \mathcal{T}$,

$$||Ax - Ay||_2 - ||x - y||_2| \le \varepsilon ||x - y||_2.$$

Quantized JL Embeddings

Idea: Use JL-embedding A and quantize each x to sign(Ax).

Quantized JL Embeddings

Idea: Use JL-embedding A and quantize each x to sign(Ax).

Lemma (Jacques et al 2011)

Let $\mathcal{T} \subset S^{N-1}$ be a finite set of points. For any

$$m \geq C' \frac{\log(|\mathcal{T}|)}{\varepsilon^2},$$

there exists a (random) linear map $A : \mathbb{R}^N \to \mathbb{R}^m$ so that for any $x, y \in \mathcal{T}$,

$$\left|\|\operatorname{sign}(Ax)-\operatorname{sign}(Ay)\|_{H}-\|x-y\|_{S^{N-1}}\right|\leq\varepsilon,$$

where $\|\cdot\|_{H}$, $\|\cdot\|_{S^{N-1}}$ are the normalized Hamming and geodesic distance, resp.

Quantized JL Embeddings

Idea: Use JL-embedding A and quantize each x to sign(Ax).

Lemma (Jacques et al 2011)

Let $\mathcal{T} \subset S^{N-1}$ be a finite set of points. For any

$$m \geq C' \frac{\log(|\mathcal{T}|)}{\varepsilon^2},$$

there exists a (random) linear map $A : \mathbb{R}^N \to \mathbb{R}^m$ so that for any $x, y \in \mathcal{T}$,

$$\left|\|\operatorname{sign}(Ax)-\operatorname{sign}(Ay)\|_{H}-\|x-y\|_{S^{N-1}}\right|\leq\varepsilon,$$

where $\|\cdot\|_{H}$, $\|\cdot\|_{S^{N-1}}$ are the normalized Hamming and geodesic distance, resp.

Remark: Up to constants, no extra price paid between JL and quantized JL embeddings!

Compressed Sensing Crash Course

Moving from finite sets to infinite sets requires more nuanced signal models.

- **Goal:** Recover $x \in \mathbb{R}^N$ from $y = Ax + \eta \in \mathbb{R}^m$, $m \ll N$, $\|\eta\|_2 \le \varepsilon$ using structural priors on x, e.g. sparsity.
 - **Remark:** Signal acquisition via *A*: compressing while acquiring.
 - Remark: JL matrices often make good CS matrices.
- Standard Solution: Solve

$$x^{\sharp} := \arg \min \|z\|_1 \text{ s.t. } \|Az - y\|_2 \le \varepsilon.$$

Theorem ((Candés et al 2006), (Cai et al 2014), ...)

If $A \in \mathbb{R}^{m \times N}$ satisfies $(2k, \alpha) - RIP$ with $\alpha \leq \frac{1}{\sqrt{2}}$ then

$$\|x^{\sharp}-x\|_2 \leq C_1 \varepsilon + C_2 \frac{\sigma_k(x)_1}{\sqrt{k}}, \quad \sigma_k(x)_1 = \min_{\substack{y \ k-sparse}} \|x-y\|_1.$$

Quantized Compressed Sensing

- As before, but now given $q = \mathcal{Q}(Ax) \in \mathcal{A}^m \subset \mathbb{R}^m$, \mathcal{A} discrete.
 - Extreme case $\mathcal{A} = \{\pm 1\}.$
- Designing \mathcal{Q}, \mathcal{A} is crucial to the analysis of problem.
- Much work has been done on recovering sparse vectors from quantized measurements, e.g.
 - P. Boufounos, R. Baraniuk "One-Bit Compressed Sensing," 2008.
 - S. Güntürk, A. Powell, R. Saab, O. Yilmaz "Sobolev Duals," 2010.
 - Y. Plan, R. Vershynin "Robust 1-bit Compressed Sensing," 2012.
 - L. Jacques, P. Boufounos, et al "Binary Stable Embeddings," 2015.
 - R. Saab, T. Huynh "Fast Binary Embeddings," 2018.

Quantized Embeddings of Infinite Sets

Few results on more general signal models, e.g.

- V. Cambereri, L. Jacques "Time for Dithering," 2017.
- R. Vershynin and Y. Plan, "Robust 1-bit Compressed Sensing," 2013.
- M. Iwen, F. Krahmer et al "One-Bit Compressed Sensing on Manifolds," 2018.

These works admit at least one of the following shortcomings:

- Slow error decay as a function of *m*.
- Assumes you have parametrization of manifold.
- Limits model to be sub-manifold of S^{N-1} .
- Gaussian (read: slow) measurements.

Shortcomings of MSQ

- All magnitude information is lost: $sign(Ax) = sign(A_{\frac{x}{\|x\|}})$.
- MSQ quantization (i.e. y = sign(Ax)) error cannot decay faster than $O(m^{-1})$ in frame setting [Goyal et al 1998].
- In sparse vector recovery [Romberg et al 2015] reconstruction error does not decay with *m*.

Our Set-Up

- Signal Model: (Unknown) *d*-manifold $K \subset B_2^N$.
- Measurements: A ∈ ℝ^{m×N} from sub-Gaussian ensemble, PCE, or BOE (rows selected uniformly with replacement). D_ϵ ∈ ℝ^{N×N} diagonal of Rademacher r.v.'s independent of A.
 - **PCE**: Partial Circulant Ensemble. Appears in channel estimation, radar.
 - **BOE**: Bounded Orthonormal Ensemble, e.g. DFT, DCT. Appears in fMRI.
- Quantization: One-bit $q = Q_{\Sigma\Delta}^{(r)}(AD_{\epsilon}x) =: Q_{\Sigma\Delta}^{(r)}(\Phi x)$, (more later).
- **Approximatation of** *K*: *Geometric Multi-Resolution Analysis* (GMRA).
 - More later.

One-Bit Noise-Shaping Quantization

 Leverages correlations between measurements to minimize quantization error.

• For a given r > 0 and filter h with $|\operatorname{supp}(h)| = r$, define

$$q_i = \text{sign} ((h * u)_{i-1} + y_i),$$

$$u_i = (h * u)_{i-1} + y_i - q_i.$$

 Must choose *h* so that whenever ||*y*||_∞ < 1, ||*u*||_∞ bounded by constant depending only on *r*.

Perks of Noise Shaping

- In frame and compressed sensing context, quantization error decays like O(m^{-r}) or O(2^{-c'm}).
 - P. Deift, S. Güntürk, F. Krahmer, "Exponentially Accurate One-Bit $\Sigma\Delta$ " 2010.
 - R. Saab, R. Wang, O. Yilmaz, "Quantization of Compressive Samples" 2015.
 - E. Chou, S. Güntürk "Distributed Noise Shaping," 2016.
- In the above contexts, norm information is preserved.
- Certain instances of noise-shaping (e.g. ΣΔ) are provably robust to hardware imperfections in machine arithmetic [Daubechies, Devore 2003]

GMRA

Roughly speaking, a GMRA is a sequence of affine approximations with a dyadic (tree) structure [Allard, Chen, Maggioni 2012].

Approximate Binary Embedding

Theorem (R. Saab, T. Huynh, 2018)

There exists $\widetilde{V} = p^{-1/2} \cdot I_{p \times p} \otimes \frac{v^T}{\|v\|_2} \in \mathbb{R}^{p \times m}$ such that the following holds: let $K \subset B_1^N$, $m \ge p \ge C_1 \alpha^{-2} \log^4(N) \max\{1, \frac{w^2(K)}{\operatorname{rad}^2(K)}\}$, and let $f(x) = \mathcal{Q}_{\Sigma A}^{(r)}(\Phi x)$. Then with high probability $\|\widetilde{V}(f(x) - f(y))\|_2 - \|x - y\|_2$ $\leq \underbrace{\max\{\alpha, \sqrt{\alpha}\} \operatorname{rad}(K)}_{} + C_2 \left(\frac{m}{p}\right)^{-r+1/2}$ manifold complexity quantization error for all $x, y \in K$.

Our Algorithm

GIVEN: $\Phi = AD_{\varepsilon} \in \mathbb{R}^{m \times N}$, $q := \mathcal{Q}(\Phi x)$, GMRA of *K*:

• **Step 1:** Find a center in the GMRA which quantizes to a bit-string close to *q*.

$$c_{j,k'} \in rgmin_{c_{j,k} \in \mathcal{C}_j} \|\widetilde{V}(\mathcal{Q}(\Phi c_{j,k}) - q)\|_2.$$

• **Step 2:** Find the point in the GMRA closest to the quantization cell containing *x*.

$$egin{aligned} &x^{\sharp} = rgmin_{z \in \mathbb{R}^N} \left\| \widetilde{V} \left(\Phi z - q
ight)
ight\|_2 \ & ext{ s.t. } z = P_{j,k'}(z), \; \|z\|_2 \leq 1. \end{aligned}$$

Our Algorithm in Pictures

Our Result

Theorem (Iwen, L., Nelson, Saab 2019)

Let $S = K \cup GMRA$ at scale j. Suppose that

$$m \ge p \ge C \log^4(N) \frac{\max\{1, w^2(S) \operatorname{rad}^{-2}(S)\}}{\alpha^2}$$

and define $\lambda := m/p$. Then with high probability the following event occurs uniformly for all $x \in K$: the solution x^{\sharp} of the main algorithm satisfies

$$\|x^{\sharp} - x\|_{2} \lesssim_{r} \underbrace{C_{x} 2^{-j}}_{GMRA \ Error} + \underbrace{\max\{\sqrt{\alpha}, \alpha\} \operatorname{rad}(S)}_{Manifold \ complexity.} + \underbrace{\lambda^{-r+1/2}}_{Quantization \ error}.$$

Important Proof Ideas

• GMRA approximation incrementally improves with scale parameter.

 \implies there's an affine plane approximating K nearby x.

- $V \circ Q \circ \Phi$ approximate isometric embedding of $S = K \cup GMRA$ from (\mathbb{R}^N, ℓ_2) to $(\{\pm 1\}^p, \ell_2)$. \implies Step 1 objective function $\|\widetilde{V}(Q(\Phi c_{j,k}) - q)\|_2 \approx \|c_{j,k} - x\|_2$.
- V ∘ Φ approximate isometric embedding of S = K ∪ GMRA from (ℝ^N, ℓ₂) to (ℝ^p, ℓ₂).

 $\implies \text{Step 2 objective} \\ \left\| \widetilde{V} \left(\Phi z - q \right) \right\|_2 \approx \| z - x \|_2 + \text{(small perturbation)}.$

Numerics

Figure: Log-scale error as a function of $\lambda = m/p$. Experiments for $S^2 \hookrightarrow \mathbb{R}^{20}$. Solid lines are GMRA refinement level j = 12; dashed lines to j = 6. Blue and red plots represent r = 2, 4 (resp.)

Concluding Remarks

- For approximately the same price (embedding dimension) as "analog" JL-embeddings, one can also find quantized JL-embeddings.
- The choice of encoder, particularly the quantizer, dramatically impacts quantization error decay of decoder.
- As in the frame/CS setting, noise-shaping quantizers exhibit same rapid quantization error decay in the (approximate) manifold model.

Noise shaping quantizers with alphabet A and scalar quantizer $Q(z) = \arg \min_{q \in A} |q - z|$ update q, u via

$$q_i = \mathcal{Q}(\rho(u_{i-r}, ..., u_{i-1}, y_i)),$$

$$y - q = Hu,$$

where *H* is lower-triangular (causality) and ρ is chosen so that $||y||_1 < C_1 \implies ||u||_{\infty} < C_2$

Appendix: Noise Shaping

[Chou, Güntürk 2016]

Appendix: GMRA

Let $J \in \mathbb{N}$ and $K_0, \ldots, K_J \in \mathbb{N}$. A *GMRA* of *K* is a collection $\{(\mathcal{C}_j, \mathcal{P}_j)\}_{j \in [J]}$ of centers $\mathcal{C}_j = \{c_{j,k}\}_{k \in [K_j]}$ and affine projections

$$\mathcal{P}_j = \left\{ P_{j,k} \colon \mathbb{R}^N \to \mathbb{R}^N : \ k \in [K_j] \right\}$$

with the following properties:

- Affine Projections. Every $P_{j,k}$ is an orthogonal projection onto some *d*-dimensional affine space which contains the center $c_{j,k}$.
- Dyadic Structure. The number of centers at each level is bounded by $|C_j| = K_j \leq C_C 2^{dj}$ for an absolute constant $C_C \geq 1$. Moreover, there exist $C_1 > 0$, $C_2 \in (0, 1]$ such that

•
$$K_j \leq K_{j+1}$$
 for all $j \in [J-1]$,

- $\|c_{j,k_1} c_{j,k_2}\|_2 > C_1 2^{-j}$ for all $j \in [J]$, $k_1 \neq k_2 \in [K_j]$,
- For each $j \in [J] \setminus \{0\}$ there exists a parent function $p_j : [K_j] \to [K_{j-1}]$ with

$$\|c_{j,k}-c_{j-1,p_j(k)}\|_2 \leq C_2 \min_{k'\in [K_{j-1}]\setminus \{p_j(k)\}} \|c_{j,k}-c_{j-1,k'}\|_2.$$

Appendix: GMRA

- Multiscale Approximation. The projectors in \mathcal{P}_j approximate K in the following sense:
 - There exists $j_0 \in [J-1]$ such that $c_{j,k} \in \text{tube}_{C_1 2^{-j-2}}(K)$ for all $j \ge j_0$ and $k \in [K_j]$.
 - For each $j \in [J]$ and $z \in \mathbb{R}^N$, let

$$c_{j,k_j(z)} \in \operatorname*{arg\,min}_{c_{j,k}\in\mathcal{C}_j} \|z-c_{j,k}\|_2.$$

Then for each $z \in K$ there exist $C_z, \tilde{C}_z > 0$ so that $||z - P_{j,k_j(z)}z||_2 \le C_z 2^{-2j}$ for all $j \in [J]$ and

$$\|z-P_{j,k'}z\|_2 \leq \widetilde{C}_z 2^{-j}$$

whenever $j \in [J]$ and $k' \in [K_j]$ satisfy

$$||z - c_{j,k'}||_2 \le 16 \max \{ ||z - c_{j,k_j(z)}||_2, C_1 2^{-j-1} \}.$$